Bayesian Classification of Multiple Sclerosis Lesions in Longitudinal MRI Using Subtraction Images
نویسندگان
چکیده
Accurate and precise identification of multiple sclerosis (MS) lesions in longitudinal MRI is important for monitoring disease progression and for assessing treatment effects. We present a probabilistic framework to automatically detect new, enlarging and resolving lesions in longitudinal scans of MS patients based on multimodal subtraction magnetic resonance (MR) images. Our Bayesian framework overcomes registration artifact by explicitly modeling the variability in the difference images, the tissue transitions, and the neighbourhood classes in the form of likelihoods, and by embedding a classification of a reference scan as a prior. Our method was evaluated on (a) a scan-rescan data set consisting of 3 MS patients and (b) a multicenter clinical data set consisting of 212 scans from 89 RRMS (relapsing-remitting MS) patients. The proposed method is shown to identify MS lesions in longitudinal MRI with a high degree of precision while remaining sensitive to lesion activity.
منابع مشابه
Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملA supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
Introduction Longitudinal magnetic resonance imaging (MRI) analysis has an important role in multiple sclerosis diagnosis and follow-up. The presence of new T2-w lesions on brain MRI scans is considered a prognostic and predictive biomarker for the disease. In this study, we propose a supervised approach for detecting new T2-w lesions using features from image intensities, subtraction values, a...
متن کاملThe Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 2 شماره
صفحات -
تاریخ انتشار 2010